Czyste auto

Rakieta Stephensona Lokomotywa Johna Blenkinsopa z 1812 Pojazd Siegfrieda Marcusa z 1889 Ford Model T z 1911 Jednak pierwszym udokumentowanym pojazdem napędzanym silnikiem cieplnym był parowy wehikuł francuskiego inżyniera

Czyste auto

Pojazd Siegfrieda Marcusa

Pierwsze pojazdy napędzane parą (1769-1830)
Powóz parowy konstrukcji Richarda Trevithicka stosowany w Londynie z 1802
Lokomotywa Trevithicka
Rakieta Stephensona
Lokomotywa Johna Blenkinsopa z 1812
Pojazd Siegfrieda Marcusa z 1889
Ford Model T z 1911

Jednak pierwszym udokumentowanym pojazdem napędzanym silnikiem cieplnym był parowy wehikuł francuskiego inżyniera wojskowego, Nicolasa-Josepha Cugnot, zbudowany w 1769. Pojazd Cugnot?a przeznaczony do ciągnięcia dział, był napędzany prymitywną, dwucylindrową maszyną parową, która umożliwiała jego ruch z prędkością zaledwie 4 km/h. Dlatego też, pojazd ten nie doczekał się uznania ówczesnych ludzi i szybko odszedł w zapomnienie.

W 1801 angielski inżynier Richard Trevithick reaktywował ideę użycia maszyny parowej do napędzania pojazdu. Udoskonaliwszy maszynę parową, zastosował ją do napędu, ?lokomotywy drogowej? i jako pierwszy w świecie, w 1804 przejechał pomyślnie 150 km, zabierając jednocześnie 12 pasażerów. Parowóz ten nie odniósł jednak sukcesu finansowego, i dlatego też często błędnie podaje się Rakietę George?a i Roberta Stephensonów jako pierwszy parowóz świata. Został on skonstruowany w 1829, właściwie była to udoskonalona wersja parowozów konstruowanych w poprzednich latach (pierwszą linię kolejowa George Stephenson uruchomił już w 1825). W Rakiecie zastosowano wielorurowy kocioł, który znacznie poprawił jej osiągi. Zbudowano ją głównie dla uczestnictwa w konkursie Rainhill Trials, którego zwycięska maszyna miała być używana przez kolej Liverpool ? Manchester. Rakieta zwyciężyła, ponieważ jako jedyna przetrwała wszystkie próby, a jej osiągi odpowiadały organizatorom. 15 września 1830 miał miejsce pierwszy śmiertelny wypadek w historii kolei ? podczas oficjalnego otwarcia linii Liverpool ? Manchester, zginął William Huskisson.
Kalendarium

ok. 4000 p.n.e. ? koło
1740 ? najstarszy znany rysunek parowego działa samobieżnego
1769 ? artyleryjski ciągnik parowy Nicolasa Cugnota
1801 ? parowy trójkołowiec Richarda Trevithicka
1811 ? angielski wynalazca John Blenkinsop wraz Matthew Murrayem opatentował konstrukcję parowozu z kołem zębatym poruszającym się po zębatej szynie biegnącej z boku torów.
1825 ? dyliżans parowy (omnibus) Gurneya w Anglii
1827 ? amerykański pojazd parowy Oshkosh Shomera i Farranda
1834 ? dyliżans parowy Dietza we Francji
1865 ? angielska ustawa Ustawa o czerwonej fladze praktycznie zakazuje używania drogowych pojazdów parowych
1875 ? pierwszy pojazd z silnikiem spalinowym ? Siegfried Marcus, Wiedeń
1888
samochód ze skrzynią biegów ? Carl Benz
Opona pneumatyczna ? John Boyd Dunlop
1894 ? we Francji odbył się pierwszy wyścig samochodowy z serii Grand Prix na 126 km trasie Paryż ? Rouen
1897 ? Stanisław Grodzki uzyskuje pierwsze prawo jazdy wydane w Warszawie na prowadzenie samochodu Peugeot P-9
1904 ? w Warszawie powstają omnibusy z silnikiem
1913 ? taśma produkcyjna ? Henry Ford
1919 ? rozrusznik silnika elektryczny
1925 ? hamulec hydrauliczny
1932 ? automatyczna skrzynia biegów ? F. Kreis, Niemcy
1947 ? opona bezdętkowa
1954 ? silnik Wankla


Źródło: https://pl.wikipedia.org/wiki/Historia_motoryzacji


Zasada działania silnika diesla

Ssanie

Do cylindra, w wyniku przesuwania się tłoka i wystąpienia dzięki temu podciśnienia, zasysane jest z otoczenia czyste powietrze1. Suw ssania kończy się zamknięciem zaworu ssącego (silnik czterosuwowy) lub przesłonięciem kanału dolotowego (silnik dwusuwowy).
Sprężanie

Zassane do cylindra powietrze (o temperaturze zbliżonej do temperatury otoczenia) jest następnie sprężane w wyniku ruchu tłoka w stronę głowicy przy zamkniętych zaworach. Podczas sprężania rośnie intensywnie temperatura powietrza do bardzo wysokiej wartości1.
Praca (ekspansja)

Temperatura powietrza pod koniec sprężania jest tak wysoka, że możliwy jest zapłon wtryśniętej dawki paliwa do przestrzeni nad tłokiem znajdującym się w pobliżu górnego martwego położenia1. Paliwo wtryskiwane jest pod wysokim ciśnieniem (zob. hydrauliczny system wtrysku paliwa), dzięki czemu uzyskuje się dobre rozpylenie paliwa. Bardzo małe krople paliwa otoczone gorącym powietrzem szybko odparowują, a pary paliwa, dzięki dużej turbulencji, dobrze mieszają się z powietrzem tworząc jednorodny palny gaz. Gaz ten ulega samozapłonowi wywołanemu wysoką temperaturą. W wyniku spalania silnie rośnie temperatura gazu. Spalanie rozpoczyna się, gdy tłok znajduje się w pobliżu górnego położenia zwrotnego tłoka1. Jest to początek ekspansji czynnika roboczego i wykonywania pracy. Początkowo, wraz ze wzrostem temperatury, rośnie także ciśnienie czynnika, lecz wzrost prędkości poruszania się tłoka powoduje, że ciśnienie zaczyna maleć, a rośnie objętość właściwa gazu. Spalanie kończy się jeszcze w czasie ruchu tłoka w stronę dolnego martwego położenia.

Podczas suwu pracy ujawnia się główna różnica pomiędzy silnikiem wysokoprężnym a silnikiem o zapłonie iskrowym pracującym według cyklu Otta. W silnikach o zapłonie iskrowym spalanie mieszanki zachodzi bardzo szybko i wiąże się z gwałtownym wzrostem temperatury i ciśnienia w cylindrze (przemiana izochoryczna). W silnikach Diesla spalanie jest wolniejsze i następuje w dużej mierze podczas cofania tłoka. Ciśnienie podczas spalania jest mniej więcej stałe, rośnie natomiast temperatura i objętość gazu (czyli jest to przemiana izobaryczna).
Wydech
Gdy tłok znajduje się w pobliżu dolnego martwego położenia, następuje otwarcie zaworu wylotowego. Ponieważ ciśnienie gazu w cylindrze jest wyższe od ciśnienia otoczenia, następuje wylot gazu do otoczenia. Zawór ten jest otwarty także podczas ruchu tłoka w kierunku głowicy i prawie wszystkie gazy spalinowe zostają wydalone z cylindra.

Źródło: https://pl.wikipedia.org/wiki/Silnik_o_zap%C5%82onie_samoczynnym


Do ważnych parametrów konstrukcyjnych

Charakterystyki silnika spalinowego są graficznym przedstawieniem zależności niektórych parametrów pracy silnika w zależności od prędkości obrotowej wału w całym zakresie pracy silnika.
Parametry konstrukcyjne

Do ważnych parametrów konstrukcyjnych silnika spalinowego wpływających zasadniczo na charakterystyki silnika są:

Średnia prędkość tłoka ? decyduje o szybkobieżności silnika.
Rodzaj silnika Średnia prędkość tłoka
m/s
silnik o zapłonie iskrowym
14 - 18
silnik o zapłonie samoczynnym
9 - 14
silnik ciągników i maszyn roboczych
8 - 10

Współczynnik kształtu cylindra. Wyraża się jako stosunek skoku tłoka do średnicy cylindra. Silnik może być krótkoskokowy, jak i długoskokowy. Decyduje o średniej prędkości tłoka i (pośrednio) o liczbie zaworów, jakie można umieścić w jednym cylindrze.
Rodzaj silnika Wskaźnik kształtu cylindra (s/d)
silnik o zapłonie iskrowym
0,6 - 1,1
silnik o zapłonie samoczynnym
0,9 - 1,4

Stopień sprężania. Jest to najistotniejszy parametr konstrukcyjny silnika. Wyraża się jako stosunek objętości komory roboczej w najwyższym i najniższym skrajnym położeniu tłoka. Im większy stopień sprężania, tym wyższa wydajność energetyczna silnika.
Rodzaj silnika Stopień sprężania
silnik o zapłonie iskrowym
7,5 - 13
silnik o zapłonie samoczynnym z doładowaniem
14 - 18
silnik o zapłonie samoczynnym
18 - 24

Źródło: https://pl.wikipedia.org/wiki/Silnik_spalinowy_t%C5%82okowy